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Abstract. A simple stable shooting method for the Schrodinger equation is described and 
is shown to work with various integrators, including the Numerov one. Quantum 
mechanical techniques are extended to apply to problems for which E is not a traditional 
eigenvalue and are shown to permit the extraction of useful information even from an 
unstable shooting method. 

1. Introduction 

In the mathematical literature which deals with techniques for the solution of two-point 
boundary value problems the test problem 

- D 2 + + x 2 + =  E+ (1) 
with E = -1, +(O) = 1 and + ( 5 )  = 0 has been studied by several authors (e.g. Holt 1964, 
Osbome 1969, Roberts and Shipman 1971, Gupta and Agarwal 1985). These authors 
have pointed out that simple shooting methods starting at x = 0 do not suffice to find 
+ ( x )  beyond x - 3 . 5 ,  because the shooting methods become unstable. The present 
work describes several original techniques which have been developed by looking at 
this mathematical problem from the point of view of a physicist who interprets the 
equations in terms of quantum mechanics. 

The guiding principles involved can be summarised as follows. Equation (1) is the 
harmonic oscillator Schrodinger equation, with E held at a value which is not an 
eigenvalue. The solution function will thus have a non-zero initial slope +'(O)=G 
whereas if E were a traditional eigenvalue we would have +'(O) = 0 (for an even-parity 
state). In the half-space 0 < x < 00 we can either fix E and find the associated G, or 
fix G and find the associated E. Only the case G = 0 will give the usual even-parity 
eigenvalues associated with the full space --co<x<00. However, we can formally 
regard the E for any G as an eigenvalue for a Schrodinger equation in the full space 
with the potential x 2 + 2 G  6(x). The delta function potential produces a slope discon- 
tinuity of 2G+(O) at x = O  and so gives +'(O)= G as the right-hand slope for an 
even-parity function with +(O) = 1. It was the exploration of these intuitive ideas which 
led to the methods of this work, and several techniques which have so far only been 
used for the special quantum mechanical case G = 0 were found to be applicable to 
the more general boundary value problem treated in the mathematical literature. 

Section 2 describes a simple shooting method for equation ( l ) ,  and points out that 
with the right approach the instability of the method can be tumed to computational 
advantage, even though +(XI at large x cannot be found. Section 3 describes a simple 
power series method which can compute G or E accurately but which again illustrates 
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the difficulty of finding +(x) at large x. Section 4 describes a new shooting technique 
which allows +(x) to be computed accurately over the whole region for any E and 
which can be used with various traditional integrating methods, including the Numerov 
one. The new method uses only one auxiliary variable, whereas Gupta and Agarwal 
(1989, in attempting something similar, devised a technique requiring three auxiliary 
variables. It is interesting to note that (as kindly pointed out by a referee) the method 
of 0 4 represents a modern computational application of some classical mathematics 
from the theory of difference equations; the invariance theorem used in that section 
is equivalent to a special case of a theorem due to Heymann (1892). Section 5 of the 
present work describes how some techniques used for quantum mechanical problems 
can be modified to calculate various quantities which depend on the solution function 
+(x), without using the explicit +(x) in the calculations. Section 6 gives a brief 
discussion of the methods developed in the previous sections. 

Following Osborne (1969) we should point out that the instabilities studied here 
and in the cited literature are not those which are due to computational rounding 
error; they are those caused by the extreme sensitivity of the actual solution function 
+(x) to the values of E and G. Even if +(x) could be computed with unlimited 
accuracy, the slightest mismatch of the initial conditions would introduce into it a 
growing exponential component which would become dominant at large x. Indeed, 
it is only because this component can be calculated with fair accuracy that some 
of the interpolatory methods described in § §  2 and 3 can be used at all to estimate 
E or G. 

2. Simple forward shooting 

Throughout this paper we shall discuss a generalised form of equation ( l ) ,  so that our 
methods are of wide applicability. We study the equation 

-D2++ V+=E+ (2) 

with V a smooth potential function. The boundary conditions are +(O) = 1 ,  +( L )  = 0. 
The most simple finite difference simulation of the differential equation (2) is provided 
by slicing the region 0 < x < L into strips of fixed width h and using the recurrence 
relation 

+ ( x + h ) = [ 2 + h 2 ( V ( x ) -  E)]+(x ) -+(x -h )  (3)  

+(h)=f[2+h2(  V(0)- E)]+(O)+hG (4) 

which must be supplemented by the starting equation 

to produce a solution with +'(O) = G. Equations ( 3 )  and (4) can be used in two ways: 
E can be fixed while G is varied to make + ( L )  zero or G can be fixed while E is 
varied to make +( L )  zero. The calculation can be performed efficiently on a microcom- 
puter using the techniques described by Killingbeck (1985b). Table 1 shows some 
results for the test problem with V = x2 and L = 5 ,  using two neighbouring G values 
and a fixed E value of - 1 .  The results show that the sensitivity of +(x) to the G value 
increases with x. The values for the ratio of the two + indicate asymptotic behaviour, 
with only a very small tail of + remaining at larger x. However, the + values in this 
tail cannot be calculated with any certainty. The two + values at x = 5 imply that a 
G value of -1.128 463 would make + ( 5 )  zero, and the last column of table 1 shows 
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Table 1. +(x) values for V =  xz, E = -1 ,  with L = 5 and h =0.025, using ( 3 )  and (4) .  

G - 1.1285 -1.1284 $I ratio Interpolated + 
X 

1 0.259 299 0.259 422 1 .ooo 47 0.259 344 
2 0.034 325 0.034 977 1.018 97 0.034 566 
3 -0.000 955 0.007 01 1 -7.344 10 0.001 992 
4 -0.097 294 0.166 086 -1.707 05 0.000 157 
4.5 -0.813 995 1.388 501 - 1.705 79 0.000 929 
5 -8.736 66 14.902 7 -1.705 77 0" 

a Rendered formally zero by choice of weighting factors. 

the resulting $(x) values, as obtained by linear interpolation from the results of the 
first two columns. The method based on equations (3) and (4) has a discretisation 
error with a leading term of h2 type, but at h =0.025 this error does not significantly 
affect the $(x) values obtained, as is confirmed by the results obtained in the next two 
sections. The instability of the forward shooting method has a computational benefit 
in that it allows G (or E )  to be found accurately (for a given h ) .  Further, the interpolated 
G (or E )  can be calculated as soon as the $ ratio has stabilised, so that it is not always 
necessary to integrate all the way up to x = L. 

3. Power series shooting 

If the potential V in equation ( 2 )  is a power series with the general term Vnxn then 
substitution of the ansatz 

m 

= exp( - @x2) A,x" (5) 
0 

into ( 2 )  produces the recurrence relation 

with the initial values 

$(O) = 1 = A ,  G = $'(O) = A , .  ( 7 )  
The series involved converges quickly and p can be adjusted to speed up convergence. 
The use of this approach to calculate quantum mechanical eigenvalues has been 
discussed by Killingbeck (1985a), but it is clear that the test $( L )  = 0 can be used to 
find $'(O) = G (with E fixed) or E (with G fixed). To make $ ( L )  zero only requires 
that the sum of the series be zero, so the exponential factor in ( 5 )  is only used explicitly 
if +(x) is quoted for x < L. We should note that table 4 of Gupta and Agarwal (1989, 
which compares $(x) values obtained by different methods, is misleading, since it 
fails to allow for the fact that some authors re-define $(x)  to incorporate a factor 
exp(-$x2), usually with p = 1. 

Table 2 shows some results for the test problem for which table 1 gave the finite 
difference results. The results for $ ( 5 )  indicate that G = -1.128 379 is required to 
make $ ( 5 )  zero. Once G is fixed, of course, the +(x) for any x can be computed, but 
we show results for the same x values used in table 1. The general trends in table 2 
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Table 2. $(x)  values for V =  x2, with E = -1, L = 5 and f l  = 0, using (6) and (7). (About 
80 terms required for convergence.) 

G - 1.1284 - 1.1283 J, ratio Interpolated J, 

X 

1 0.259 317 0.259 440 1 .ow 47 0.259 343 
2 0.034 428 0.035 080 1.01893 0.034 565 
3 0.OOO 327 0.008 304 25.4256 0.001 976 
4 -0.054 989 0.209 190 -3.804 21 0.000 489 
4.5 -0.460 808 1.751 14 -3.800 16 0.003 702 
5 -4.954 08 18.826 6 -3.800 22 0 

a Rendered formally zero by choice of weighting factors. 

are the same as those in table 1. +(x) is again difficult to estimate beyond x-3.5. 
The values of +(1) and +(2) in the two tables agree closely, which shows that the 
discretisation error in the finite difference method does not affect them much, despite 
the fact that it shifts the G estimate from -1.128 379 to -1.128 463. 

4. An accurate shooting method 

We have recently devised and tested a simple form of shooting which provides accurate 
+(x) values at all x and does not require the specification of G; indeed, it produces 
the G value as one of the results. The new method uses an auxiliary variable 4 and 
in this respect was inspired by the work of Gupta and Agarwal (1985), although they 
needed three auxiliary variables. The argument used to derive the equations is reminis- 
cent of those which use the concept of the Wronskian in the theory of differential 
equations. First we write the finite difference recurrence relation (3) in the symbolic 
form 

+ ( N + 2 ) =  F ( N + l ) + ( N + l ) - + ( N )  (8) 
since the particular form of F does not affect the argument. Using the convention 
x = Nh we use the initial value +(O) = 1 in (8) but do not have to give a value for 
+( 1) = +( h )  to initiate the calculation. Instead we introduce the auxiliary recurrence 
relation 

(9) + ( N +  1) = F ( N +  1 ) 4 ( N )  - + ( N  - 1) 

with the initial values 4(0)= 1, 4(-1)=0.  Multiplying (8) by 4 ( N )  and (9) by 
+ ( N +  l), we can show that the quantity 

has the property W ( N )  = W ( N +  l) ,  i.e. is N independent. However, W(N)  has the 
value 1 at N = 0. Suppose now that +(No) = 0, as we would require to ensure that 
$ ( L )  is zero with L=Noh.  From (10) we find that W ( N o - l ) = + ( N o - l ) ~ ( N o - l ) ,  
and thus conclude that the last two + values are given by 

Having obtained these two + values we can then use them in (8), running it backwards 
to find the + ( N )  down to +(-1) and estimating G from the finite difference formula 

W(N)=S(N)4(N)-+(N+l)4(N- l )  (10) 

+(No) = 0 +(No- 1) = 1/4(No- 1). (11) 

2h+’(O)=$(l)-+(-l). (12) 
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The algebra described here is straightforward, as is that in the derivation of equations 
(3) and (4). What matters computationally is the stability of the recurrence relations 
involved. We found that the new method is highly stable and table 3 shows some 
results for the standard test case used in tables 1 and 2. Comparison of the second 
column of values in table 3 with the results in table 1 shows clearly how well the simple 
shooting method of § 2 is stabilised by using the auxiliary recurrence relation. The 
last column in table 3 was obtained using the Numerov method in the simplified form 
recently discussed by Killingbeck (1986). The vital step is to note that in the Numerov 
method the quantity 

obeys the recurrence relation (3) but with an extra term Ah4( V ( x )  - E)' added inside 
the square bracket in (3). This merely changes the form of the function F ( N )  in 
equation (8) and so the (CIN(x) values with (LN(0) = 1 are obtained from the calculation. 
The correct $ ( x )  values then follow by applying the conversion formula (13) at the 
end of the shooting process. Killingbeck (1986) discussed various possible choices for 
the function which appears in the square bracket of equation (3) and they could all 
be used in conjunction with the stabilised shooting technique described here. 

Table 3. $(x) values for V = x 2 ,  with E = - 1 ,  L = 5 ,  using (9), (10) and (11). 

Simple method" 

X No = 100 No = 200 

Nu m e r o v 

No = 100 

1 0.259 350 8 0.259 344 6 
2 0.034 572 0 0.034 566 0 
3 0.001 991 6 0.001 989 3 
4 0.000 046 2 0.000 046 0 
4.5 0.000 004 91 0.000 004 88 
5 0 0 

G -1.128 714* -1.128463a 

0.259 342 6 
0.034 564 1 
0.001 988 5 
0.000 046 0 
0.000 004 87 
0 

-1.128 378b 

a Richardson extrapolation gives G = -1.128 379. 
Using a fourth-order difference formula for G. 

Table 4. Results obtained by the new technique (Numerov version) for the case V = xz, 
L=10, E = l ,  N0=200. 

9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

2.5793 E-  18 
1.2671 E- 14 
2.2903 E - 11 
1.5232 E - 8 
3.7268 E - 6 
3.3547 E-4 
1.1109 E-2 
1.3534 E - 1 
6.0653 E - 1 
1 EO 

2.5768 E-  18 
1.2664 E - 14 
2.2897 E - 11 
1.5230E-8 
3.7267 E - 6 
3.3546 E-4 
1.1109 E-2 
1.3534 E - 1 
6.0653 E - 1 
1 EO 
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Numerical tests confirm that the Numerov version of the technique described here 
gives a truncation error of leading order h4 in $(x). It is clear that this technique, 
based on a simple three-term recurrence relation, is a much more simple way to achieve 
h4 accuracy than those which calculate the eigenvalues of large pentadiagonal matrices 
(e.g. Fack and Vanden Berghe 1985). To illustrate clearly the stability of the technique 
we show in table 4 some results for the case V = x2, E = 1, L = 10; the computed $(x) 
agree with the exact analytical solution over a range of many orders of magnitude. 
To check that the stability of the method does not depend crucially on the monotonicity 
of the potential function we also tested the method on potentials such as -5x' + x4 
and (x - 5)2 and obtained highly accurate results. 

5. Further calculations 

If the potential function V ( x )  has even parity then the initial condition G = 0 plus the 
test $( L )  = 0 will yield quantum mechanical eigenvalues for even-parity states. Using 
the methods of $9 2 and 3 the G value can be set at zero and the E values which 
would make $ ( L )  zero can be found by interpolation from the $ ( L )  values at several 
trial E values (by analogy with the procedures used to set up tables 1 and 2). The 
method of $ 3 is most conveniently set up to yield $ and G when E is given, and so 
eigenvalues are found by varying E until the resulting G is zero. Since the initial 
condition used is $(O) = 1, it might seem that the method is suitable only for even-parity 
eigenvalues. However, computer experiment revealed that G (  E )  has a singularity as 
E passes through odd-parity eigenvalues, so that the eigenvalues for both parities can 
be found by varying E to find the zeros of the quantity G (  1 + G2)-'. For example, 
the Numerov integrator with L = 7 and No = 200 gives the correct energies 1.232 351, 
3.507 388, 5.589 779 and 7.648 202 for the potential x2 + x'( 1 + x')-', which Fack and 
Vanden Berghe (1986) treated by a pentadiagonal matrix approach. 

The function $(x) as computed in 0 3 has the initial value $(O) = 1, whereas in 
quantum mechanics we would usually require that the integral of $' over the interval 
0 to L should equal 1. As pointed out in the introduction, $(x) can be regarded as 
an eigenfunction for a potential which includes a delta function type of term at the 
origin. We can use the arguments devised by Killingbeck (1985b) to conclude that the 
square of the normalised wavefunction at the origin is given by 

aG (14) 

even when G is non-zero (i.e. E is not a traditional quantum mechanical eigenvalue). 
Equation (14) can be used in conjuction with all three methods of this paper. The 
method of $ 3 allows the integral of i,k2 to be calculated explicitly and so gives an 
independent check of the validity of (14). However, even with the method of 0 3 it is 
easier to vary E, find aG/aE and thus $'(O) and then get the normalised $(x) by 
scaling the original table which uses the initial condition $(O) = 1. 

If the potential V(x) has a small term Ax2 added to it, then the arguments given 
by Killingbeck (1985b) lead to the conclusion 
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and so (x2) can be found by using the three methods of this paper, monitoring the 
response of E or G as the other quantities are varied slightly. The method of 9 3, of 
course, allows (x’ )  to be estimated directly (if desired) from the relevant integrals, but 
the indirect methods based on equation (15) will work even with the first two methods, 
which do not give an accurate +(x) for all x. This seems to be a remarkable result, 
but we conjecture that the explanation is that the instability of forward shooting only 
sets in in the tail region of IC, and so the lost information about + ( x )  makes negligible 
difference to the integrals defining (x’) .  This is consistent with the fact that accurate 
E values can be found by integrating only up to the onset of instability, as discussed 
in 9 1,  so that application of the energy-based equation (15) leads to accurate expecta- 
tion values. Clearly, the use of x2 here is purely illustrative; the expectation value of 
any function f ( x )  can be found by similar numerical procedures. We checked that 
for the case V = x2, L = 5,  E = 1 the use of (14) and (15) with the methods of 09 2 and 
3 gave the correct +’(O) and (x’) values, 1.12838 and i, respectively. When E is 
changed to -1, we found that +’(O) becomes 2.557 1 1  and (x’) becomes 0.221 357. 
These results are reasonable, since tables 3 and 4 show that at E = - 1  the function $ 
is concentrated nearer to the origin than it is at E = 1.  

6. Conclusion 

The stable shooting method described in this paper makes possible the accurate 
determination of the solution function + ( x )  over the whole region of integration and 
is applicable for any E value, whether or not E is a traditional quantum mechanical 
eigenvalue for the potential V ( x ) .  The method provides the $(No)  and $(N,,-l) 
values for inward integration directly, without use of the WKB approximations used 
by other workers (e.g. Cooley 1961, Wicke and Harris 1976). The method of 9 3  
provides accurate G or E values for power law potentials even though it shows the 
same kind of instability as the simple forward shooting method of § 2. The indirect 
methods of 9 5 make it possible to extract some useful information even from methods 
which are unstable for the purpose of calculating +(x) throughout the whole range. 

References 

Cooley J W 1961 Marh. Compur. 15 363 
Fack V and Vanden Berghe 1985 J. Phys. A :  Marh. Gen. 18 3355 
Gupta R C and Aganval R P 1985 J. Math. Anal. Appl. 112 210 
Heymann W 1892 1. Reine Angew. Math. 109 112 
Holt J F 1964 Commun. ACM 1 3 6 6  
Killingbeck J 1985a Microcomputer Quantum Mechanics (Bristol: Adam Hilger) 
- 1985b J. Phys. A: Math. Gen. 18 245 
- 1986 Phys. Lett. ll5A 301 
Osbome M R 1969 J. Math. Anal. Appl. 27 417 
Roberts S M and Shipman J S 1971 J. Opr. Theor. Appl. 7 301 
Wicke B G and Hams D 0 1976 J. Chem. Phys. 64 5236 


